Thickness Scaling of Ferroelectricity in Lanthanum-Doped Bismuth Ferrite Nanostructures

Karla Del Cid-Ledezma, Will Linthicum, William P. Huey, Bryan D. Huey

Institute of Material Science, University of Connecticut

March 9th, 2022
Introduction

- Need to identify materials for Beyond-CMOS devices that facilitate:
 - High processing speed
 - High memory density
 - Low consumption of power
 - Non-volatile
 - Ability to be embedded

Motivation

- Lanthanum-doped Bismuth Ferrite (LBFO) improves the following compared to Bismuth Ferrite (BFO):
 - Ferroelectric properties
 - Structural properties
 - Coercive voltage
 - Domain size
 - Fatigue behavior

Methods

Topography and PFM

Nanopatterning

In situ - Switching

Tomography

Voltage bias

Force
Electric Field induced Switching
High-Force Switching

Amplitude

Phase
High-Force Switching

- We can see the domain switching as the voltage is changed
 - -7V to 0 to -7V again
 - Change happens quickly
Nanopatterning
Nanopatterning and PFM

Progression of PFM signal as nanomachining occurs
Domain Tomography

Grid: 1.9M 40.2^2 x 1 nm^3 voxels
Conclusion and Future works

- Future work would focus on applying a voltage bias to a single mesa with its respective mesa in the row being the control.
Thank you!