A wavelength-scale black phosphorus spectrometer

Shaofan Yuan¹, Doron Naveh², Kenji Watanabe¹, Takashi Taniguchi³, Fengnian Xia⁴
¹Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA
²Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
³Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
⁴International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

Introduction: On-chip spectrometers with a compact footprint are being extensively pursued due to their promising future in critical applications such as sensing, surveillance and spectral imaging. Most existing miniaturized spectrometers use a large array of photodetection elements to capture the different spectral components of incident light, from which its spectrum is reconstructed⁵-⁷.

The operational principle of the single-detector black phosphorus (BP) spectrometer

Device mechanism: Tunable Stark effect in a single BP photodetector, with a footprint of 9×16 µm².⁶,⁷

Steps of the spectroscopy: 1. learning, 2. sampling, 3. reconstruction

Mathematical tools: Adaptive regressions with regularizations⁸,⁹

Characterizations of the tunable BP photodetector

- The dual-gate BP photodetector consists of a graphene/hBN/BP/hBN heterostructure on a SiO₂/Si substrate.
- The photocurrent is maximized along the charge-neutrality line, and the displacement field is given by $D = \varepsilon_{BN} (V_G - V_D)/d_{BN}$.
- The photoresponsivity of BP as a function of D and wavelength λ is inferred based on its photoresponse to a blackbody source.

Spectroscopy demonstrations

- By fitting the measured photocurrents as a function of D, including the data measured at D_1, D_2, and D_3, the unknown spectrum can be reconstructed.
- The spectrum of an infrared laser is reconstructed and compared with the standard reference spectrum. The resolution is 90 nm at mid-infrared.
- The spectral feature of carbon dioxide can be identified using this single-detector spectrometer.

Reference:

Acknowledgement:
This work is supported by the government of Israel. The measurements at Yale also leveraged some instruments acquired through AFOSR DURIP. Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI and the CREST, JST.